Monday, October 10, 2011

Reflection and Refraction

In this experiment the goal was to find the relationship between the two angles of incident and refraction.  For the experiment using the following setup:
we shined a beam of light first through the flat surface of the semicircular plastic prism and we measured the mentioned angles. Then we turned the prism and repeated the same experiment.
Here are the result

Flat surface first
Trial θIncident θrefraction sin(θIncident) sin(θrefraction)
1 0±0.5 0±0.5 0.000±0.009 0.000±0.009
2 5±0.5 4±0.5 0.087±0.009 0.070±0.009
3 10±0.5 7±0.5 0.174±0.009 0.122±0.009
4 15±0.5 10±0.5 0.259±0.009 0.174±0.009
5 20±0.5 13±0.5 0.342±0.009 0.225±0.009
6 25±0.5 16±0.5 0.423±0.009 0.276±0.009
7 30±0.5 19±0.5 0.500±0.009 0.326±0.009
8 35±0.5 22±0.5 0.574±0.009 0.375±0.009
9 40±0.5 26.5±0.5 0.643±0.009 0.446±0.009
10 50±0.5 31±0.5 0.766±0.009 0.515±0.009
11 60±0.5 35±0.5 0.866±0.009 0.574±0.009
12 70±0.5 39±0.5 0.940±0.009 0.629±0.009

and this is the graph of sin(incident) vs sin(refraction)

y = 0.6641x + 0.0024


Curved surface first

trial θincident θrefraction sinincident ) Sin(θrefraction)
1 0±0.5 0±0.5 0.000±0.009 0.000±0.009
2 5±0.5 7.5±0.5 0.087±0.009 0.131±0.009
3 10±0.5 16±0.5 0.174±0.009 0.276±0.009
4 15±0.5 23±0.5 0.259±0.009 0.391±0.009
5 20±0.5 32±0.5 0.342±0.009 0.530±0.009
6 25±0.5 39±0.5 0.423±0.009 0.629±0.009
7 30±0.5 48.5±0.5 0.500±0.009 0.749±0.009
8 35±0.5 63±0.5 0.574±0.009 0.891±0.009
9 40±0.5 75±0.5 0.643±0.009 0.966±0.009
10 45±0.5 no refraction 0.707±0.009


and the graph is as follow

y = 1.5125x + 0.0026


in both cases the angle of refraction is on the y axis and angle of incident on the x axis 

n1Sin(θincident) = n2Sin(θrefraction)
=> n1 / n2 = Sin(θrefraction) / Sin(θincident) = m slope of the graph

however for the first graph n1 is air and n2 is the prism so the slope is reciprocal of nso since the slope is 0.6641 the reciprocal is 1.506±0.01  which is close to 1.5125±0.01 of the second graph's slope
both these values represent the index of refraction of the prism.




No comments:

Post a Comment